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This paper presents a simple shrinkage estimator of rates based on Bayesian methods. Our focus
is on crime rates as a motivating example. The estimator shrinks each town’s observed crime
rate toward the country-wide average crime rate according to town size. By realistic simulations
we confirm that the proposed estimator outperforms the maximum likelihood estimator in terms
of global risk. We also show that it has better coverage properties.
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1. Introduction

1.1. Two counterintuitive random phenomena

It is a classic result in statistics that the smaller
the sample, the more variable the sample mean.
The result is due to Abraham de Moivre and it
tells us that the standard deviation of the mean
is sx̄ = s/pn, where n is the sample size and s
the standard deviation of the random variable
of interest. Although the equation is very sim-
ple, its practical implications are not intuitive.
People have erroneous intuitions about the laws of
chance, argue Tversky and Kahneman in their
famous paper about the law of small numbers
(Tversky and Kahneman, 1971).

Serious consequences can follow from small-
sample inference ignoring deMoivre’s equation.
Wainer (2007) provides a notorious example: in
the late 1990s and early 2000s private and pub-
lic institutions provided massive funding to
small schools. This was due to the observation

that most of the best schools—according to a
variety of performance measures—were small.
As it turns out, there is nothing special about
small schools except that they are small: their
over-representation among the best schools is
a consequence of their more variable perfor-
mance, which is counterbalanced by their over-
representation among the worst schools. The
observed superiority of small schools was sim-
ply a statistical fluke.

Galton (1886) first described another stochastic
mechanism that is dangerous to ignore. Galton
observed that children of tall (or short) par-
ents usually grow up to be not quite as tall
(or short), i.e. closer to average height. Today
we know this phenomenon as regression to
the mean, and we will find it wherever we
find variation. Imagine a coach who berates a
runner who had an unusually slow lap time
and finds that, indeed, the next lap is faster.
The coach, who always berates slow runners,
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Q: why do students in small 
schools perform better?



Var(x̄) =
�

n

<latexit sha1_base64="wu//azA2nL8XWROPhGwm9cBtMb4=">AAACD3icbVA9SwNBEN3zM8avqKXNYhBjEy4iqIUQtLGMYD4gF8LcZi9Zsrt37O6J4bifYONfsbFQsbW189+4l6TQxAcDj/dmmJnnR5xp47rfzsLi0vLKam4tv76xubVd2Nlt6DBWhNZJyEPV8kFTziStG2Y4bUWKgvA5bfrD68xv3lOlWSjvzCiiHQF9yQJGwFipWzjyBJiBEkkDVFryfFD44RhfYi9QQBJPs76ANJFpt1B0y+4YeJ5UpqSIpqh1C19eLySxoNIQDlq3K25kOgkowwinad6LNY2ADKFP25ZKEFR3kvFDKT60Sg8HobIlDR6rvycSEFqPhG87s/P1rJeJ/3nt2ATnnYTJKDZUksmiIObYhDhLB/eYosTwkSVAFLO3YjIAG4WxGeZtCJXZl+dJ/aR8UXZvT4vVq2kaObSPDlAJVdAZqqIbVEN1RNAjekav6M15cl6cd+dj0rrgTGf20B84nz/6MJzE</latexit><latexit sha1_base64="wu//azA2nL8XWROPhGwm9cBtMb4=">AAACD3icbVA9SwNBEN3zM8avqKXNYhBjEy4iqIUQtLGMYD4gF8LcZi9Zsrt37O6J4bifYONfsbFQsbW189+4l6TQxAcDj/dmmJnnR5xp47rfzsLi0vLKam4tv76xubVd2Nlt6DBWhNZJyEPV8kFTziStG2Y4bUWKgvA5bfrD68xv3lOlWSjvzCiiHQF9yQJGwFipWzjyBJiBEkkDVFryfFD44RhfYi9QQBJPs76ANJFpt1B0y+4YeJ5UpqSIpqh1C19eLySxoNIQDlq3K25kOgkowwinad6LNY2ADKFP25ZKEFR3kvFDKT60Sg8HobIlDR6rvycSEFqPhG87s/P1rJeJ/3nt2ATnnYTJKDZUksmiIObYhDhLB/eYosTwkSVAFLO3YjIAG4WxGeZtCJXZl+dJ/aR8UXZvT4vVq2kaObSPDlAJVdAZqqIbVEN1RNAjekav6M15cl6cd+dj0rrgTGf20B84nz/6MJzE</latexit><latexit sha1_base64="wu//azA2nL8XWROPhGwm9cBtMb4=">AAACD3icbVA9SwNBEN3zM8avqKXNYhBjEy4iqIUQtLGMYD4gF8LcZi9Zsrt37O6J4bifYONfsbFQsbW189+4l6TQxAcDj/dmmJnnR5xp47rfzsLi0vLKam4tv76xubVd2Nlt6DBWhNZJyEPV8kFTziStG2Y4bUWKgvA5bfrD68xv3lOlWSjvzCiiHQF9yQJGwFipWzjyBJiBEkkDVFryfFD44RhfYi9QQBJPs76ANJFpt1B0y+4YeJ5UpqSIpqh1C19eLySxoNIQDlq3K25kOgkowwinad6LNY2ADKFP25ZKEFR3kvFDKT60Sg8HobIlDR6rvycSEFqPhG87s/P1rJeJ/3nt2ATnnYTJKDZUksmiIObYhDhLB/eYosTwkSVAFLO3YjIAG4WxGeZtCJXZl+dJ/aR8UXZvT4vVq2kaObSPDlAJVdAZqqIbVEN1RNAjekav6M15cl6cd+dj0rrgTGf20B84nz/6MJzE</latexit>



Q: how tall are the children of 
tall parents?



Published in 1886



‘On many occasions I have 
praised cadets… the next time 
they usually do worse. On the 

other hand, I have often 
screamed into a cadet’s 

earphone for bad execution, 
and in general he does better 

on his next try.’

https://www.spectator.co.uk/2011/12/he-knew-he-was-wrong/
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These phenomena are everywhere. 
Beware unusual results.



Alive and well in official ssb.no data
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In estimating > 2 averages 
simultaneously, there is a better* 

estimator than the observed average.

* in terms of expected squared-error loss
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Better results by shrinking 
toward some common value

-6-

The maximum likelihood estimate for qi is the
observed crime rate q̂i = ki/ni. In order to fix
values of a and b, we pool the MLEs for all
towns q̂1, . . . , q̂m and fit a beta distribution to
these data by the method of moments. We
show the resulting fit in Figure 3. Because
the expectation and variance of a Beta(a, b) are

a
a+b and ab

(a+b)2(a+b+1) , respectively, the param-
eter estimates for the prior are

b =
a(1 � q̄)

q̄
, and

a =

✓
1 � q̄

S2 � 1
q̄

◆
q̄2.

Here q̄ = Âi q̂i
m and S2 = Âi(q̂i�q̄)2

m�1 are the sam-
ple mean and variance of the pooled MLEs.

Instead of estimating a and b from the data like
this, which ignores any randomness in these
parameters, we could have a prior distribution
for the parameters themselves. This would
yield a typical Bayesian hierarchical model.
Note also that in forming the estimate for town
i, we end up using its information twice: once
in eliciting our prior and once in the likelihood.
This is convenient because we need only to
find one prior rather than one for each town
where we exclude the ith town from the ith
prior. This bit of trickery does not make much
difference: we have several hundreds of towns
and hence removing a single town does not
affect the shape of the prior much.

The estimate q̂s
i =

a+ki
a+b+ni

shrinks the observed,
or MLE, crime rate toward the prior mean q̄.
We can rewrite so that q̂s

i = di q̄ + (1 � di)q̂i,
with di =

a+b
a+b+ni

. Here di directly reflects the
prior’s influence on q̂s

i , and we see that this
influence grows as the town size, ni, shrinks.

3.2. James-Stein estimates

For completeness we demonstrate empirically
that the James–Stein estimator is superior to
the MLE in terms of risk. If town i has a large
enough population, we can consider the nor-
mal approximation to the binomial distribution

and assume

q̂i =
ki
ni

⇠ N
⇣

qi, s2
i

⌘
,

where s2
i = qi(1�qi)

ni
is unknown. If we assume

that towns are similar in terms of variance we
can consider the pooled variance estimate

s2
P =

Âm
i=1(ni � 1)ŝ2

i
Âm

i=1(ni � 1)
,

where ŝ2
i = q̂i(1�q̂i)

ni
= ki(ni�ki)

n3
i

. The James-
Stein estimator of crime probability for town i
is then

q̂ JS
i =

 
1 �

(m � 2)ŝ2
P

Âm
i=1 q̂2

i

!
q̂i.

This is a shrinkage toward zero. It assumes that
crime rates are probably not as high as they
appear. This is different from our assumption
that crime rates are probably not as far away
from the average as they appear. It is simple to
modify the above to shrink toward any origin.
The Efron-Morris variant (Efron and Morris,
1973) shrinks toward the average:

q̂ JS
i = q̄ +

 
1 �

(m � 2)ŝ2
P

Âm
i=1(q̂i � q̄)2

!
(q̂i � q̄).

We will use this variant so that the two meth-
ods shrink toward the same point.

3.3. Uncertainty intervals

We construct credible intervals from the pos-
terior. A 95% credible interval contains .95 of
the posterior density, and the simplest way to
construct one is to place it between the .025
and .975 quantiles of the posterior. For the
MLE we use the typical normal approxima-
tion (or Wald) confidence interval. There is
to our knowledge no straight-forward way to
construct confidence intervals for the JS estima-
tor, so we will leave this as an exercise for the
reader.
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All other averages used to adjust a single avg.



“Borrowing strength from the ensemble” 
or  

“Partial pooling”
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f (qi) (Spiegelhalter et al., 2004). In the bino-
mial sense, qi has the remarkable property that
it is the long-run frequency with which crimes
occur regardless of the i.i.d. assumption; the
prior precisely reflects our opinion about this
limit. By virtue of De Finetti’s theorem, the
exchangeability assumption justifies the intro-
duction of the unknown parameter qi in a bino-
mial model for ki, so long as we take the prior
into account.

To make an argument with priors is to make
a Bayesian argument. Shrinkage is implicit in
Bayesian inference: observed data gets pulled
toward the prior (and indeed the prior is pulled
toward the data likelihood). We propose an
almost Bayesian shrinkage estimator, q̂s

i , that
accounts for the variability due to population
size. Our estimator is almost Bayesian because
we do not treat the prior very formally, as will
be clear below.

In a Bayesian argument we treat qi as random.
The statistician specifies a prior distribution
f (qi) for the parameter that reflects her knowl-
edge (and uncertainty) about qi. As in the fre-
quentist setting, she then selects a parametric
model for the data given the parameters, which
allows her to compute the likelihood f (x|qi).
Inference about qi consists of computing its
posterior distribution by Bayes’ theorem:

f (qi|x) =
f (x|qi) f (qi)R

f (x|qi) f (qi)dqi
.

There are various assessments we could make
about the collection of qi. If we assume they
are identical we can pool them and use a
single prior. If we assume they are inde-
pendent we specify one prior for each and
keep them separate. If we assume they are
exchangeable—similar but not identical—it fol-
lows from De Finetti that there is a common
prior distribution conditional on which the
q1, . . . , qm are i.i.d. (Spiegelhalter et al., 2004).

We make this latter judgment and take a beta
distribution common to all crime probabilities

as prior. Our likelihood for an observed num-
ber of crime reports follows a binomial dis-
tribution. It is a classic exercise to show that
the posterior distribution of qi is then also a
beta distribution. The problem remains how
to choose the parameters for the prior. On the
idea that a given town is probably not that dif-
ferent from all the other towns, we will simply
pool the observed crime rates for all towns and
fit a beta distribution to this ensemble by the
method of moments.

Under squared error loss, the posterior mean
as point estimate minimizes Bayes risk. The
posterior mean serves as our shrinkage esti-
mate, q̂s

i , for qi. We will see that q̂s
i in effect

shrinks the observed crime rate q̂i toward the
country-wide mean q̄ = Â 1

m q̂i by taking into
account the size of town i.

Bayesian inference allows for intuitive uncer-
tainty intervals. In contrast to a classical fre-
quentist confidence interval, which can be
tricky to interpret, we can say that qi lies within
the Bayesian credible interval with a certain
probability. This probability is necessarily sub-
jective, as the prior distribution is subjective.
We will conduct simulations to compare the
coverage properties of our estimator to the clas-
sical asymptotic confidence interval.

1.5. Resources

This case-study is written with a pedagogi-
cal purpose in mind, and can be used by ad-
vanced undergraduate and beginning gradu-
ate students in statistics as a tutorial around
shrinkage estimation and Bayesian methods.
We will mention some possible extensions in
the conclusion that could be the basis for stu-
dent projects. Data and code for all our anal-
yses, figures, and simulations are available at
https://github.com/3inar/crime_rates

2. Data

We will work with the official crime report
statistics released by Statistics Norway (SSB)
every year. These data contain the number of
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prior distribution conditional on which the
q1, . . . , qm are i.i.d. (Spiegelhalter et al., 2004).

We make this latter judgment and take a beta
distribution common to all crime probabilities

as prior. Our likelihood for an observed num-
ber of crime reports follows a binomial dis-
tribution. It is a classic exercise to show that
the posterior distribution of qi is then also a
beta distribution. The problem remains how
to choose the parameters for the prior. On the
idea that a given town is probably not that dif-
ferent from all the other towns, we will simply
pool the observed crime rates for all towns and
fit a beta distribution to this ensemble by the
method of moments.

Under squared error loss, the posterior mean
as point estimate minimizes Bayes risk. The
posterior mean serves as our shrinkage esti-
mate, q̂s

i , for qi. We will see that q̂s
i in effect

shrinks the observed crime rate q̂i toward the
country-wide mean q̄ = Â 1

m q̂i by taking into
account the size of town i.

Bayesian inference allows for intuitive uncer-
tainty intervals. In contrast to a classical fre-
quentist confidence interval, which can be
tricky to interpret, we can say that qi lies within
the Bayesian credible interval with a certain
probability. This probability is necessarily sub-
jective, as the prior distribution is subjective.
We will conduct simulations to compare the
coverage properties of our estimator to the clas-
sical asymptotic confidence interval.

1.5. Resources

This case-study is written with a pedagogi-
cal purpose in mind, and can be used by ad-
vanced undergraduate and beginning gradu-
ate students in statistics as a tutorial around
shrinkage estimation and Bayesian methods.
We will mention some possible extensions in
the conclusion that could be the basis for stu-
dent projects. Data and code for all our anal-
yses, figures, and simulations are available at
https://github.com/3inar/crime_rates

2. Data

We will work with the official crime report
statistics released by Statistics Norway (SSB)
every year. These data contain the number of
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f (qi) (Spiegelhalter et al., 2004). In the bino-
mial sense, qi has the remarkable property that
it is the long-run frequency with which crimes
occur regardless of the i.i.d. assumption; the
prior precisely reflects our opinion about this
limit. By virtue of De Finetti’s theorem, the
exchangeability assumption justifies the intro-
duction of the unknown parameter qi in a bino-
mial model for ki, so long as we take the prior
into account.

To make an argument with priors is to make
a Bayesian argument. Shrinkage is implicit in
Bayesian inference: observed data gets pulled
toward the prior (and indeed the prior is pulled
toward the data likelihood). We propose an
almost Bayesian shrinkage estimator, q̂s

i , that
accounts for the variability due to population
size. Our estimator is almost Bayesian because
we do not treat the prior very formally, as will
be clear below.

In a Bayesian argument we treat qi as random.
The statistician specifies a prior distribution
f (qi) for the parameter that reflects her knowl-
edge (and uncertainty) about qi. As in the fre-
quentist setting, she then selects a parametric
model for the data given the parameters, which
allows her to compute the likelihood f (x|qi).
Inference about qi consists of computing its
posterior distribution by Bayes’ theorem:

f (qi|x) =
f (x|qi) f (qi)R

f (x|qi) f (qi)dqi
.

There are various assessments we could make
about the collection of qi. If we assume they
are identical we can pool them and use a
single prior. If we assume they are inde-
pendent we specify one prior for each and
keep them separate. If we assume they are
exchangeable—similar but not identical—it fol-
lows from De Finetti that there is a common
prior distribution conditional on which the
q1, . . . , qm are i.i.d. (Spiegelhalter et al., 2004).

We make this latter judgment and take a beta
distribution common to all crime probabilities

as prior. Our likelihood for an observed num-
ber of crime reports follows a binomial dis-
tribution. It is a classic exercise to show that
the posterior distribution of qi is then also a
beta distribution. The problem remains how
to choose the parameters for the prior. On the
idea that a given town is probably not that dif-
ferent from all the other towns, we will simply
pool the observed crime rates for all towns and
fit a beta distribution to this ensemble by the
method of moments.

Under squared error loss, the posterior mean
as point estimate minimizes Bayes risk. The
posterior mean serves as our shrinkage esti-
mate, q̂s

i , for qi. We will see that q̂s
i in effect

shrinks the observed crime rate q̂i toward the
country-wide mean q̄ = Â 1

m q̂i by taking into
account the size of town i.

Bayesian inference allows for intuitive uncer-
tainty intervals. In contrast to a classical fre-
quentist confidence interval, which can be
tricky to interpret, we can say that qi lies within
the Bayesian credible interval with a certain
probability. This probability is necessarily sub-
jective, as the prior distribution is subjective.
We will conduct simulations to compare the
coverage properties of our estimator to the clas-
sical asymptotic confidence interval.

1.5. Resources

This case-study is written with a pedagogi-
cal purpose in mind, and can be used by ad-
vanced undergraduate and beginning gradu-
ate students in statistics as a tutorial around
shrinkage estimation and Bayesian methods.
We will mention some possible extensions in
the conclusion that could be the basis for stu-
dent projects. Data and code for all our anal-
yses, figures, and simulations are available at
https://github.com/3inar/crime_rates

2. Data

We will work with the official crime report
statistics released by Statistics Norway (SSB)
every year. These data contain the number of
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f (qi) (Spiegelhalter et al., 2004). In the bino-
mial sense, qi has the remarkable property that
it is the long-run frequency with which crimes
occur regardless of the i.i.d. assumption; the
prior precisely reflects our opinion about this
limit. By virtue of De Finetti’s theorem, the
exchangeability assumption justifies the intro-
duction of the unknown parameter qi in a bino-
mial model for ki, so long as we take the prior
into account.

To make an argument with priors is to make
a Bayesian argument. Shrinkage is implicit in
Bayesian inference: observed data gets pulled
toward the prior (and indeed the prior is pulled
toward the data likelihood). We propose an
almost Bayesian shrinkage estimator, q̂s

i , that
accounts for the variability due to population
size. Our estimator is almost Bayesian because
we do not treat the prior very formally, as will
be clear below.

In a Bayesian argument we treat qi as random.
The statistician specifies a prior distribution
f (qi) for the parameter that reflects her knowl-
edge (and uncertainty) about qi. As in the fre-
quentist setting, she then selects a parametric
model for the data given the parameters, which
allows her to compute the likelihood f (x|qi).
Inference about qi consists of computing its
posterior distribution by Bayes’ theorem:

f (qi|x) =
f (x|qi) f (qi)R

f (x|qi) f (qi)dqi
.

There are various assessments we could make
about the collection of qi. If we assume they
are identical we can pool them and use a
single prior. If we assume they are inde-
pendent we specify one prior for each and
keep them separate. If we assume they are
exchangeable—similar but not identical—it fol-
lows from De Finetti that there is a common
prior distribution conditional on which the
q1, . . . , qm are i.i.d. (Spiegelhalter et al., 2004).

We make this latter judgment and take a beta
distribution common to all crime probabilities

as prior. Our likelihood for an observed num-
ber of crime reports follows a binomial dis-
tribution. It is a classic exercise to show that
the posterior distribution of qi is then also a
beta distribution. The problem remains how
to choose the parameters for the prior. On the
idea that a given town is probably not that dif-
ferent from all the other towns, we will simply
pool the observed crime rates for all towns and
fit a beta distribution to this ensemble by the
method of moments.

Under squared error loss, the posterior mean
as point estimate minimizes Bayes risk. The
posterior mean serves as our shrinkage esti-
mate, q̂s

i , for qi. We will see that q̂s
i in effect

shrinks the observed crime rate q̂i toward the
country-wide mean q̄ = Â 1

m q̂i by taking into
account the size of town i.

Bayesian inference allows for intuitive uncer-
tainty intervals. In contrast to a classical fre-
quentist confidence interval, which can be
tricky to interpret, we can say that qi lies within
the Bayesian credible interval with a certain
probability. This probability is necessarily sub-
jective, as the prior distribution is subjective.
We will conduct simulations to compare the
coverage properties of our estimator to the clas-
sical asymptotic confidence interval.

1.5. Resources

This case-study is written with a pedagogi-
cal purpose in mind, and can be used by ad-
vanced undergraduate and beginning gradu-
ate students in statistics as a tutorial around
shrinkage estimation and Bayesian methods.
We will mention some possible extensions in
the conclusion that could be the basis for stu-
dent projects. Data and code for all our anal-
yses, figures, and simulations are available at
https://github.com/3inar/crime_rates

2. Data

We will work with the official crime report
statistics released by Statistics Norway (SSB)
every year. These data contain the number of
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Parameter of interest (𝛉) treated as random



The prior represents our knowledge/uncertainty 
about the quantity of interest: what would you 

say about crime rate if you knew nothing 
about a town?



Assume rates are quite similar to one another
Pooled violent crime rates, 2016
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Likelihood: what is the evidence in the data? 
Binomial: number of successes (crimes) 

in some number of trials (inhabitants)



Posterior: Taking prior beliefs and evidence into 
account. How should I adjust my prior belief 
about crime rates once I see the evidence?



Hierarchical model for crime rates
Crime rate = #crimes/#inhabitants

✓ = k/n
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2.1. Simulation study

We run a simulation study for validation. If
we assume that the crime probability in town
i is stationary we can pool the observed crime
rates of all years and use their average, q̄i, as
a reasonable “truth.” This allows us to as-
sess the performance of our estimator against
known, realistic crime probabilities, which of
course is impossible in the real data. The
simulated crime report count in town i is
ki ⇠ Binomial(q̄i, ni), where ni is the 2016 pop-
ulation of town i. Figure 4 shows a realiza-
tion of this procedure. Although not a perfect
replica of Figure 1—the real data do not have
any rates below .0017—it looks fairly realistic.
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Figure 4: Funnel plot of a set of simulated
crime rates

3. Methods

3.1. Shrinkage estimates

We treat qi as the probability for a person to
commit a crime in a given period. We model
the total number of crime reports in the i-th
town, ki, as the number of successful Bernoulli
trials among ni, where ni is the population of
this town. As explained in the introduction,
this suggests the following simple Bayesian

model, also shown in Figure 5:

qi|a, b ⇠ Beta(a, b),
ki|qi ⇠ Binomial(ni, qi).

As mentioned the assumption of town ex-
changeability leads to this hierarchical model.
This assumption might not be appropriate if
we had reasons to think, for instance, that some
regions are more prone to crime than others. In
this case, region-specific priors might be better.

a, b

q1 q2 . . . qm

k1 k2 . . . km

Figure 5: A graph describing our model.
Crime counts, ki, are (conditionally) i.i.d. bi-
nomials whose respective parameters, qi, are
(conditionally) i.i.d. according to a common
prior.

The posterior follows from the fact that the beta
distribution is conjugate to itself with respect to
the binomial likelihood. Generally, conjugacy
means that the prior and posterior distribu-
tions belong to the same distributional family
and usually entails that there is a simple closed-
form way of computing the parameters of the
posterior. Wasserman (2010, p. 178) shows a
derivation of the posterior in the beta–binomial
model:

qi|ki ⇠ Beta(a + ki, b + ni � ki).

We will look into the relation between the pa-
rameters of the posterior to those of the prior
in terms of successes and failures in the results
section.

The shrinkage estimate for the crime probabil-
ity in town i is the posterior mean

q̂s
i =

a + ki
a + b + ni

.
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2.1. Simulation study

We run a simulation study for validation. If
we assume that the crime probability in town
i is stationary we can pool the observed crime
rates of all years and use their average, q̄i, as
a reasonable “truth.” This allows us to as-
sess the performance of our estimator against
known, realistic crime probabilities, which of
course is impossible in the real data. The
simulated crime report count in town i is
ki ⇠ Binomial(q̄i, ni), where ni is the 2016 pop-
ulation of town i. Figure 4 shows a realiza-
tion of this procedure. Although not a perfect
replica of Figure 1—the real data do not have
any rates below .0017—it looks fairly realistic.
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Figure 4: Funnel plot of a set of simulated
crime rates

3. Methods

3.1. Shrinkage estimates

We treat qi as the probability for a person to
commit a crime in a given period. We model
the total number of crime reports in the i-th
town, ki, as the number of successful Bernoulli
trials among ni, where ni is the population of
this town. As explained in the introduction,
this suggests the following simple Bayesian

model, also shown in Figure 5:

qi|a, b ⇠ Beta(a, b),
ki|qi ⇠ Binomial(ni, qi).

As mentioned the assumption of town ex-
changeability leads to this hierarchical model.
This assumption might not be appropriate if
we had reasons to think, for instance, that some
regions are more prone to crime than others. In
this case, region-specific priors might be better.
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Figure 5: A graph describing our model.
Crime counts, ki, are (conditionally) i.i.d. bi-
nomials whose respective parameters, qi, are
(conditionally) i.i.d. according to a common
prior.

The posterior follows from the fact that the beta
distribution is conjugate to itself with respect to
the binomial likelihood. Generally, conjugacy
means that the prior and posterior distribu-
tions belong to the same distributional family
and usually entails that there is a simple closed-
form way of computing the parameters of the
posterior. Wasserman (2010, p. 178) shows a
derivation of the posterior in the beta–binomial
model:

qi|ki ⇠ Beta(a + ki, b + ni � ki).

We will look into the relation between the pa-
rameters of the posterior to those of the prior
in terms of successes and failures in the results
section.

The shrinkage estimate for the crime probabil-
ity in town i is the posterior mean

q̂s
i =

a + ki
a + b + ni

.
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2.1. Simulation study

We run a simulation study for validation. If
we assume that the crime probability in town
i is stationary we can pool the observed crime
rates of all years and use their average, q̄i, as
a reasonable “truth.” This allows us to as-
sess the performance of our estimator against
known, realistic crime probabilities, which of
course is impossible in the real data. The
simulated crime report count in town i is
ki ⇠ Binomial(q̄i, ni), where ni is the 2016 pop-
ulation of town i. Figure 4 shows a realiza-
tion of this procedure. Although not a perfect
replica of Figure 1—the real data do not have
any rates below .0017—it looks fairly realistic.
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3. Methods

3.1. Shrinkage estimates

We treat qi as the probability for a person to
commit a crime in a given period. We model
the total number of crime reports in the i-th
town, ki, as the number of successful Bernoulli
trials among ni, where ni is the population of
this town. As explained in the introduction,
this suggests the following simple Bayesian

model, also shown in Figure 5:

qi|a, b ⇠ Beta(a, b),
ki|qi ⇠ Binomial(ni, qi).

As mentioned the assumption of town ex-
changeability leads to this hierarchical model.
This assumption might not be appropriate if
we had reasons to think, for instance, that some
regions are more prone to crime than others. In
this case, region-specific priors might be better.

a, b

q1 q2 . . . qm

k1 k2 . . . km

Figure 5: A graph describing our model.
Crime counts, ki, are (conditionally) i.i.d. bi-
nomials whose respective parameters, qi, are
(conditionally) i.i.d. according to a common
prior.

The posterior follows from the fact that the beta
distribution is conjugate to itself with respect to
the binomial likelihood. Generally, conjugacy
means that the prior and posterior distribu-
tions belong to the same distributional family
and usually entails that there is a simple closed-
form way of computing the parameters of the
posterior. Wasserman (2010, p. 178) shows a
derivation of the posterior in the beta–binomial
model:

qi|ki ⇠ Beta(a + ki, b + ni � ki).

We will look into the relation between the pa-
rameters of the posterior to those of the prior
in terms of successes and failures in the results
section.

The shrinkage estimate for the crime probabil-
ity in town i is the posterior mean

q̂s
i =

a + ki
a + b + ni

.



Posterior also beta: its mean gives us a shrinkage 
estimate
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Posterior also beta: its mean gives us a shrinkage 
estimate

Interpretation of the Beta(α, β): 
distribution over probability when 

observed α - 1 successes, β - 1 
failures.  

Our prior is equivalent to adding 
922 inhabitants to each town, 5 of 

whom are criminals.
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2.1. Simulation study

We run a simulation study for validation. If
we assume that the crime probability in town
i is stationary we can pool the observed crime
rates of all years and use their average, q̄i, as
a reasonable “truth.” This allows us to as-
sess the performance of our estimator against
known, realistic crime probabilities, which of
course is impossible in the real data. The
simulated crime report count in town i is
ki ⇠ Binomial(q̄i, ni), where ni is the 2016 pop-
ulation of town i. Figure 4 shows a realiza-
tion of this procedure. Although not a perfect
replica of Figure 1—the real data do not have
any rates below .0017—it looks fairly realistic.
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Figure 4: Funnel plot of a set of simulated
crime rates

3. Methods

3.1. Shrinkage estimates

We treat qi as the probability for a person to
commit a crime in a given period. We model
the total number of crime reports in the i-th
town, ki, as the number of successful Bernoulli
trials among ni, where ni is the population of
this town. As explained in the introduction,
this suggests the following simple Bayesian

model, also shown in Figure 5:

qi|a, b ⇠ Beta(a, b),
ki|qi ⇠ Binomial(ni, qi).

As mentioned the assumption of town ex-
changeability leads to this hierarchical model.
This assumption might not be appropriate if
we had reasons to think, for instance, that some
regions are more prone to crime than others. In
this case, region-specific priors might be better.

a, b

q1 q2 . . . qm

k1 k2 . . . km

Figure 5: A graph describing our model.
Crime counts, ki, are (conditionally) i.i.d. bi-
nomials whose respective parameters, qi, are
(conditionally) i.i.d. according to a common
prior.

The posterior follows from the fact that the beta
distribution is conjugate to itself with respect to
the binomial likelihood. Generally, conjugacy
means that the prior and posterior distribu-
tions belong to the same distributional family
and usually entails that there is a simple closed-
form way of computing the parameters of the
posterior. Wasserman (2010, p. 178) shows a
derivation of the posterior in the beta–binomial
model:

qi|ki ⇠ Beta(a + ki, b + ni � ki).

We will look into the relation between the pa-
rameters of the posterior to those of the prior
in terms of successes and failures in the results
section.

The shrinkage estimate for the crime probabil-
ity in town i is the posterior mean

q̂s
i =

a + ki
a + b + ni

.
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Posterior also beta: its mean gives us a shrinkage 
estimate
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There aren’t 80 violent crimes 
reported in Vadsø every year.  

That happened one year.



There aren’t 80 violent crimes 
reported in Vadsø every year.  

That happened one year.

In fact there are about 89 reports a year, 
averaged across 2008—2016.



Some simulation results
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Some simulation results
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Some simulation results
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Summary

• Don’t get too excited about values far from the average 

• Borrowing strength can reduce risk, improve interval calibration 

• Fun (playing w data) can lead to profit (publication)



Thank you!
Slides available at 3inar.github.io

http://3inar.github.io

