

Predicting breast cancer metastasis from blood samples

"On variance and other problems"

Einar Holsbø January, 2017

Q: can we predict metastasis from gene expression measurements in blood samples?

A: maybe

Norwegian Women and Cancer (NOWAC)

- Prospective case—control study
- Blood samples + questionnaires

Enrollment

Enrollment

Enrollment

Time →

Case-control

Case-control

1 year before diagnosis

dim(gene_expression) ## [1] 88 12404 summary(days_to_diagnosis) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 6.0 117.8 189.5 186.8 269.2 358.0 summary(metastasis) *## FALSE TRUE* ## 66 22 table(metastasis, stratum) ## stratum *## metastasis screening interval clinical* ## FALSE10 13 43 ## TRUE 10 6 6

Data at a glance

How to do predictive modelling

- 1. Pick some of your favorite models
- 2. Evaluate model performance by cross-validation
- 3. Fit tuning parameters by nested cross-validation

Some models

Penalized logistic regression

find $\hat{\beta}$ s.t. $\log \frac{p(Y|x)}{1 - p(Y|x)} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots$

From Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

Nearest centroids

From Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

Some models

Cross validation

Cross validation

Cross validation

Fit model ->

Evaluate ->

Finding the "best" parameter alpha by cross-validation

Fit tuning parameters??????? Finding the "best" parameter alpha by cross-validation

Cross validation is almost useless to me

Accuracy

Precision

Time (train + test)

Cross validation is almost useless to me

I spent actual time interpreting plots like these.....

Precision

Solution: resampling

alpha

Solution: resampling

alpha

Another confusing thing

stability (enet) elastic net stability (lasso) lasso centroids

AUC for different models

Another confusing thing

stability (enet) elastic net stability (lasso) lasso centroids

AUC for different models

The line for random guess

2 ways to get AUROC < .5

A. You made a mistake calculating AUC

B. There is something v. strange with the data

A simulated paradox

- One "gene," x
- Response 1 or 0
- Two strata: 1 and 0
- If stratum == response, $x \sim N(1, variance)$
- Else, $x \sim N(0, variance)$

A simulated paradox

5

Χ

A simulated paradox

response 0 1

"You have to stratify."

-Eiliv Lund to myself, like two-and-a-half years ago

Including stratum gives expected null behavior

stability (enet) elastic net stability (lasso) lasso centroids

AUC when including strata

Introducing some bias: focus on a likely subspace

- In high dimensions, bias is your friend
- get closer to diagnosis
- Rank by linear model:

• Theory: there is something going on in the gene expression as we

expression = $\beta_0 + \beta_1$ time + β_2 metastasis + β_3 time × metastasis + error

metastasized
 non-metastasized

log(fold change) as linear function of time-to-diagnosis

stability (e) + time elastic net + time stability (I) + time lasso + time centroids + time

0.40

Improved predictions

AUC for models with preselection

Lower variance/higher stability

centroids + time centroids elastic net + time elastic net

Stability with/without preselection

Stability = set overlap between predictive genes across two resmaplings

Lessons/perspectives

- Cross validation can actually be super high in variance, be careful
- But be especially careful of holdout set validation
- Remember Simpson's paradox, watch your strata
- Be critical of Signatures

Lessons/perspectives

• OTOH: There seems to be some weak signal here

- Lars Ailo Bongo, BDPS group, University of Tromsø
- Etienne Birmelé, MAP5, Université Paris Descartes
- Eiliv Lund, Department of Community Medicine, University of Tromsø

These are my advisers

Thank you!

email: einar@cs.uit.no
 twitter: @0xeinar
github: github.com/3inar

Slides available online at 3inar.github.io/talks/

